Regional Energy Trade and Refining Industry in Northeast Asia

Kensuke Kanekiyo
Managing Director

The Institute of Energy Economics, Japan
1.1 Energy Outlook of Asia

1. Japan: Leveling off while fossil energy consumption decreases.
2. Developing Asia: More than double by 2030 as China’s presence and import dependence greatly increase.

The Institute of Energy Economics, Japan

April 2006, IEEJ
1.2 Petroleum Demand of NE Asia

Japan: Oil demand is on a declining trend
Korea: Oil demand grows modestly as economy matures.
China: Oil demand is increasing vigorously while domestic production is leveling-off.

Korea: 2004/1973: 966.4% 2004/1995: 113.5%

The Institute of Energy Economics, Japan

Copyright IEEJ 2006
1. Oil consumption of Northeast Asia (13 MMBD in 2005) will increase more than 5 MMBD by 2020.
2. Since China’s domestic production would be more or less leveling off, oil import will also increase by 5 MMBD.
1.4 Refinery Capacity of NE Asia

1. Refinery Capacity (2004: 12.9 MMBD)
 Japan: reduced since the second oil crisis.
 Korea: increased substantially in the 1990s.
 China: increased but not catching up demand growth

2. Petroleum Product Balance
 Japan and China: import position vs. Korea: export position

Refining Capacity of Northeast Asia

- Japan
 - 2005/1995: 90.5%
 - 2005/1980: 80.3%
- Korea
 - 2005/1995: 150.4%
 - 2005/1980: 427.3%
- China
 - 2005/1995: 164.1%
 - 2005/1980: 364.9%

Refining Capacity vs. Consumption

Source: BP Statistical Review of World Energy
2.1 Light-Heavy Spread of Oil Price

1. Quality differential between light and heavy crude oils may be in the range of $2-4/Bbl technically.

2. The spread expanded abnormally reflects lack of upgrading capacity.

>> Cracking, desulfurization, hydro-treating etc.
2.2 Era of High Energy Price

1. Oil price has surpassed LNG price: the gap is widening.
2. Coal price is going up, but still absolutely low.
3. Electricity tariff has decreased reflecting slow investment, though it would rebound sooner or later.

Import Energy Price CIF Japan and EP and City Gas Tariff

<table>
<thead>
<tr>
<th>Energy Type</th>
<th>Price in June 2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude Oil</td>
<td>$75/Bbl ($12.84/MMBTU)</td>
</tr>
<tr>
<td>LPG</td>
<td>$500/ton ($10.51/MMBTU)</td>
</tr>
<tr>
<td>Coking Coal</td>
<td>$50/ton ($1.98/MMBTU)</td>
</tr>
<tr>
<td>Steaming Coal</td>
<td>$25/Bbl ($4.34/MMBTU)</td>
</tr>
<tr>
<td>CityGas Japan®</td>
<td>$50/ton ($1.98/MMBTU)</td>
</tr>
</tbody>
</table>

The Institute of Energy Economics, Japan
Copyright IEEJ 2006
2.3 Facts and Concerns

Facts

1. Petroleum demand of Northeast Asia will increase 5 MMBD by 2020 mainly in China, while it is declining in Japan.
2. Incremental crude oil for processing must be imported, increasing input of heavier and high sulfur crude.
3. Light-heavy price differential among crude oils has been widening, enabling expensive counter measures.

Concerns

1. Refining capacity should be expanded to satisfy demand.
2. Refineries should prepare for increase of imported crude.
 - Deep-water ports to receive very large tankers (VLCC)
 - Sophisticated facilities for cracking and desulfurization
 - Oil stock piling against import disruptions
3.1 Petroleum Demand Structure

1. IEA forecasts that petroleum demand on Northeast Asia will increase mainly in transport sector.

2. This tendency may be enhanced by diversified energy price increases.

![Oil Demand of Northeast Asia](chart.png)

<table>
<thead>
<tr>
<th>Year</th>
<th>Industry</th>
<th>Transport</th>
<th>Others</th>
<th>Non-EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971</td>
<td>3.1 MB</td>
<td>0.7 MB</td>
<td>2.9 MB</td>
<td>2.3 MB</td>
</tr>
<tr>
<td>2002</td>
<td>8.0 MB</td>
<td>1.8 MB</td>
<td>4.2 MB</td>
<td>1.6 MB</td>
</tr>
<tr>
<td>2010</td>
<td>13.8 MB</td>
<td>3.5 MB</td>
<td>6.7 MB</td>
<td>3.8 MB</td>
</tr>
<tr>
<td>2020</td>
<td>18.6 MB</td>
<td>4.3 MB</td>
<td>8.5 MB</td>
<td>5.2 MB</td>
</tr>
<tr>
<td>2030</td>
<td>24.4 MB</td>
<td>5.2 MB</td>
<td>10.3 MB</td>
<td>6.5 MB</td>
</tr>
</tbody>
</table>
3.2 Heavy Fuel being driven out

1. Share of heavy fuel oil is less than 20% in Northeast Asian market.

2. With higher oil prices driven by rise of transport fuel demand, heavy fuel oil demand shall be further eroded giving way to natural gas, coal and nuclear.

→ Oil based IPPs, once burgeoned, are now burdens!
Japanese oil demand is on a declining trend. Among others,

1. Heavy fuel oil demand is decreasing faster. Especially, oil based IPPs are being knocked down.
2. Light products (gasoline & naphtha) demand is relatively steady.
3. Middle distillates demand is turning downward.
 1) Energy conservation campaign in freighter business.
 2) Inferior price competition in heating sector.
3.4 Middle Distillates being driven out

Higher energy price will
1. Enhance energy conservation in general.
2. Intensify price competition among fuel sources outside the transportation sector.

Power (coal & nuclear) >> Natural Gas

>> LPG & Middle Distillates

Japanese Demand for Gas and Middle Distillates

- **2004**: 148.5 MM TOE
- FOA: 18.3%
- LNG: 50.9%
- Kero: 16.5%
- Ref LPG: 3.2%
- Import LPG: 9.2%
- Indigenous: 1.9%

Price Competitiveness
- Power (Nuclear & Coal) >> LNG >> Oil & LPG
3.5 Motor Fuel Quality Regulation

1. The Japanese oil industry realized “Sulfur Free(<10ppm)” for both gasoline and gas oil as of January 1, 2005.

2. With worsening metropolitan environment, China is going to improve motor fuel quality abruptly.
3.6 Refining Facility: China/Japan

1. In China, cost effective cracking methods such as FCC are mainly used.
2. Desulfurization and hydro-treating capacity is extremely small, which are necessary to upgrade motor fuel quality.

<table>
<thead>
<tr>
<th></th>
<th>China</th>
<th>Japan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topping Unit</td>
<td>1000BD 4528</td>
<td>1000BD 4897</td>
</tr>
<tr>
<td>Vacuum Distillation</td>
<td>40</td>
<td>1708</td>
</tr>
<tr>
<td>Coking/Residue Cracking</td>
<td>306</td>
<td>147</td>
</tr>
<tr>
<td>FCC</td>
<td>892</td>
<td>966</td>
</tr>
<tr>
<td>Reformer</td>
<td>157</td>
<td>782</td>
</tr>
<tr>
<td>Hydro Cracking</td>
<td>122</td>
<td>143</td>
</tr>
<tr>
<td>Hydro Treating/Desulfurization</td>
<td>355</td>
<td>4622</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>%</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cracking Ratio</td>
<td>29.2</td>
<td>25.6</td>
</tr>
<tr>
<td>Desulfurization Ratio</td>
<td>7.8</td>
<td>94.4</td>
</tr>
<tr>
<td>Reforming Ratio</td>
<td>3.5</td>
<td>16.0</td>
</tr>
</tbody>
</table>
1. Issues for Asia

1) Petroleum demand in China and India will grow fast. Securing stable oil product supply is essential for sustainable development.

2) Improving motor fuel quality is urgent environmental requirement.

→ Huge investment and sophisticated technologies!!

2. Issues for Japan

1) Total demand continues to decline

 Heavy fuel oil & IPP use: declines fast
 Middle distillates: continues to decline

2) Core demand: Transport Fuel and Petrochemical Feedstock

 → Increasing idle capacities
 → Thorough cracking of residue
 → Excessive supply of middle distillates
Cracking the residue thoroughly shall result in:

1. Decrease of LPG and Naphtha import
2. Increase of Middle Distillates export
3. Decrease of Heavy Fuel export for deeper processing
4.2 Refining Business Trend

1. Oil demand will converge to lighter products
 → Noble use of conventional oil
 → Reflecting price spread among energy sources subject to difficulties of producing light petroleum products (ex. GTL, Coal liquefaction, bio-diesel, etc.)

2. More FCC with advanced hydro treating will be introduced
 → FCC gasoline
 → Olefins for petrochemicals
 → Middle distillates with wide range of property (ex. Sulfur content, Cetane number, Viscosity, etc.)

3. In the Asian market, wide range of middle distillates will become available from Japan and Korea. This will
 → Mitigate investment requirements in emerging market
 → Require standardized grades for smart trading
 → Require segregated tanks for handling
4.3 Advanced Residue Conversion

- **Crude**
 - Topper
 - Atomos Residue
 - Vacuum Gas Oil
 - Vacuum Residue

- **Vacuum**
 - Hydro Treatment
 - RFCC
 - Advanced Hydro Cracking
 - More Lighter Products
 - Lighter Products
 - Middle distillates

- **Hydrogen**
 - Petro Cokes
 - Solvent Extraction
 - Pitch Oil
 - Gasification
 - Electricity Synthetic Gas GTL/DME

The Institute of Energy Economics, Japan

Copyright IEEJ 2006
4.4 Noble Use of Middle Distillates

1. Deep cracking of residue, reflecting petroleum product demand tendency, will produce wide range of middle distillates with different characteristics.

2. Minimizing quality give-away after costly cracking, standard specifications should be defined corresponding to quality groups.

3. Two or three standard grades may be set. For example,
 1) **High quality diesel** for high speed motor vehicles.
 Extra LS (50ppm max) and high cetane number (50+)
 2) **Regular gas oil** for low duty engines.
 Regular sulfur (500ppm max) and cetane number (45+)
 3) **Heating oil**: Low sulfur but low cetane number
Thank you for your kind attention

The Institute of Energy Economics, Japan
http://eneken.ieej.or.jp