Outline

- 1. Status of Japan's CO2 emission
- 2. CO2 mitigation by the electric utilities
 - Demand side
 - Supply side
- 3. Nuclear and Renewable Energy
 - Status
 - Policy
 - Challenges

Status of GHG in Japan

Kaya Identity

$CO_2 = \frac{CO_2}{E} \frac{E}{GDP} GDP$

 $\therefore \Delta CO_2 = \Delta \frac{CO_2}{E} + \Delta \frac{E}{GDP} + \Delta GDP$

Decomposition of Changes in CO2

	1990-	2000-	2007-	2005-2020	
	2000	2005	2008	Aso	Hatoyama
∆GDP	+1.2	+1.3	-3.8	+1.1	+1.1
∆CO2∕ Energy	-0.4	+0.6	-4.2		
∆Energy ∕GDP	+0.2	-1.1	+1.6	-2.3	-3.7
$\triangle CO2$	+1.0	+0.8	-6.3	-1.2	-2.6

CO2 Emission By Sector (1990-2008)

Electrification in Economies

Electrification in the Household Sector

Energy Use in the Household Sector (2008)

Heating

CO2 Mitigation by the Electric Utility Industry

- Demand Side
 - Electrification and diffusion of high efficiency device
 - Heat Pump
 - Thermal Storage Air-Conditioning
 - EV
 - -Use of untapped energies
 - River water
 - Geothermal heat & waste heat

Heat pump is Renewable

- Device to pump up heat with little electric power.
- Heat in the air is renewable resource for heating, cooling and hot water supply.
- Heat is used for generating electricity. Heat pump uses electric power to generate more heat.
- Grid electricity with heat pump is CHP.

Heat Pump Is Clean and Efficient

Potential CO2 Reduction by Heat Pump

Source: Heat Pump and Thermal Storage Tech. Center of Japan

Electric Generation: Biggest CO2 Emitter

CO2 Mitigation by the Electric Utility Industry

- Supply Side
 - -Use of non-fossil resources
 - Nuclear power
 - Renewable energies
 - Improving efficiency of electric power facilities
 - LNG combined cycle and coal-fired power
 - Reducing T & D loss

Peak load supply Pondage type hydroelectric power Peak load supply Thermal power (Oil) Electricity for pumped-storage

Middle load supply

Thermal power (Coal)

hydroelectric power

Thermal power

(LNG, LPG and other gases)

Base load supply

Runoff-river type hydroelectric power4812162024Time (Hours)

Nuclear Capacity Factor (1990~2008)

CO2 Intensity per kWh

International Comparison of Nuclear Capacity Factor

Renewables in Total Primary Energy Supply (2007)

Green Energy Promotion Policies

Feed In Tariff

- FIT has been introduced in Nov. 2009.
- The purpose is to accelerate PV development and it's diffusion.
- Electric utilities are required to purchase at \48 (53 US cent) from residential PV and \24 from nonresidential PV.
- Purchase period is ten years. Purchase price is fixed for 10 years.
- Eligible customer will be residential and nonresidential but only for excess power.

German Case

PV

Year

Year

Renewable Cost for German Household

Renewables in TPES 2007/2020/2030

Renewables in Generation Mix (2007/2020/2030)

Outlook for Renewables

10⁴ kl

	2005	2020	2030
PV	35(1,420MW)	700(2,800MW)	1,300
Wind	44(1,080MW)	200(5,000MW)	269
Waste + Biomass	252(2,010MW)	408	494
Biomass Heat Use	142	335	423
Other	687	812	727
Total	1,160	2,455	3,213

METI, Long-term Demand and Supply Outlook (Revised), August 2009

Generating Cost by Technology

What If Generation Exceeds Load ?

0

How much cost?

	Trillion Yen	Billion Dollar
Battery on grid side	16.2	180
Battery on customer side	45.9-57.2	510-630
Controlling power output	3.67	40

Thank you for your attention